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Abstract:  Using vertical and horizontal aggregations construction of data sets is the main progression in present 

days. Traditionally we are developing the data set construction in Horizontal aggregation for large data 

representation process present in data mining applications. In this process we propose to develop three main basic 

methods, they are SPJ, PIVOT, CASE for generating columns in horizontal tabular layout aided with complicated 

programming language. Traditionally these methods we developed in primary index based data set construction of 

the horizontal aggregation. For construction of top data sets presentation in the form of records with efficient and 

realistic data construction process primary indexes are not supported for this representation. So we propose to extend 

Primary indexes to secondary indexes for doing relevant data representation of selected horizontal aggregation 

functions. These results are efficiently constructed top data sets on grouping techniques to handle aggregate queries 

with aggregate functions. Our experimental results show efficient data construction for optimized query generation. 
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I. INTRODUCTION 

 

 There are two main ingredients in such SQL 

code: joins and aggregations. [1] the most widely-

known aggregation is the sum of a column over 

groups of rows. [2] There exist many aggregation 

functions and operators in SQL. Unfortunately, all 

these aggregations have limitations to build data sets 

for data mining purposes.[3] The main reason is that, 

in general, data sets that are stored in a relational 

database (or a data warehouse) come from On-Line 

Transaction Processing (OLTP) systems where 

database schemas are highly normalized. Based on 

current available functions and clauses in SQL, [1] a 

significant effort is required to compute aggregations. 

Such effort is due to the amount and complexity of 

SQL code that needs to be written, optimized and 

tested. Standard aggregations are hard to interpret 

when there are many result rows. New class of 

aggregate functions that aggregate numeric 

expressions and transpose results to produce a data 

set with a horizontal layout. [5] Functions belonging 

to this class are called horizontal aggregations.  

First, they represent a template to generate SQL code 

from a data mining tool. This SQL code reduces 

manual work in the data preparation phase in a data 

mining project. Second, since SQL code is 

automatically generated it is likely to be more 

efficient than [2] SQL code written by an end user. 

Third, the data set can be created entirely inside the 

DBMS. Horizontal aggregations just require a small 

syntax extension to aggregate functions called in a 

SELECT statement. We develop a technique for 

pushing GPs down query trees of Select-project-join 

may use aggregations like max, sum, etc. and that use 

arbitrary functions in their selection conditions. [2] 

Our technique pushes down to the lowest levels of a 
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query tree aggregation computation, duplicate 

elimination, and function computation.[3] 

 

 

II. DEFINATIONS 
 

Let F be a table having a simple primary key 

K represented by an integer, p discrete attributes and 

one numeric attribute: F(K;D1; …..;Dp;A). [6] In 

OLAP terms, F is a fact table with one column used 

as primary key, p dimensions and one measure 

column passed to standard SQL aggregations. F is 

assumed to have a star schema to simplify exposition. 

[5] Column K will not be used to compute 

aggregations. Dimension lookup tables will be based 

on simple foreign keys. That is, one dimension 

column Dj will be a foreign key linked to a lookup 

table that has Dj as primary key. Input table F size is 

called N. That is, |F| = N. Table F represents a 

temporary table or a view based on a, star join, query 

on several tables.  

 

 

III. HORIZONTAL AGGREGATIONS 

 

  

Our main goal is to define a template to 

generate SQL code combining aggregation and 

transposition (pivoting). A second goal is to extend 

the SELECT statement with a clause that combines 

transposition with aggregation.[2]  A method, SPJ 

method, is used to evaluate horizontal aggregations 

which relies on relational operations. That is, select 

project, join and aggregation queries. In order to 

evaluate this query the query optimizer takes three 

input parameters: (1) the input table F, (2) the list of 

grouping columns L1;…. ;Lm , (3) the column to 

aggregate (A).[1]  In a horizontal aggregation there 

are four input parameters to generate SQL code: 1) 

the input table F, 2) the list of GROUP BY columns 

L1; …… ;Lj , 3) the column to aggregate (A), 4) the 

list of transposing columns R1; … ; Rk. 

 . 

 

SELECT L1; …; LJ, H(A BY R1; … ; Rk) 

FROM F 

GROUP BY L1; … ; LJ; 

 

 The result rows are determined by columns 

L1; … ; LJ in the[3]  GROUP BY clause if present. 

Result columns are determined by all potential 

combinations of columns R1; … ; Rk, where k = 1 is 

the default. 

 The main reasons are that any insertion into 

F during evaluation may cause inconsistencies: (1) it 

can create extra columns in FH, for a new 

combination of R1; … ; Rk; (2)[3]  it may change the 

number of rows of FH, for a new combination of L1; 

… ; LJ ; (3) it may change actual aggregation values 

in FH.  

Therefore, the result table FH must have as 

primary key the set of grouping columns { L1; … ; 

LJ} and as non-key columns all existing combinations 

of values R1; … ; Rk.  

A horizontal aggregation exhibits the 

following properties: 

1) n= | FH |matches the number of rows in a vertical 

aggregation grouped by L1; … ;Lj . 

2) d = | πR1,….,Rk  (F) | 

3) Table FH may potentially store more aggregated 

values than FV due to nulls. That is, | FV | ≤  nd. 

 DBMS limitations: On the other hand, the 

second important issue is automatically generating 

unique column names. [4] However, these are not 
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important limitations because if there are many 

dimensions that is likely to correspond to a sparse 

matrix (having many zeroes or nulls) on which it will 

be difficult or impossible to compute a data mining 

model. The column name length issue can be solved 

by generating column identifiers with integers and 

creating a description table that maps identifiers to 

full descriptions, but the meaning of each dimension 

is lost. An alternative is the use of abbreviations, 

which may require manual input. 

 

IV. HOLISTIC FUNCTIONS 

 

Both the distributive and algebraic functions 

have the distributive property, though the algebraic 

functions have different consolidating function. 

Functions not distributive or algebraic are called 

holistic. [7] The results of this type of aggregate 

function are normally determined by the entire set of 

inputs and are not able to be evaluated incrementally. 

That is, neither sub aggregate functions (the F() in 

distributive and H ( ) in algebraic aggregate 

functions) nor consolidating aggregate function (GO) 

can be identified. An example of holistic function is 

MEDIAN (). The evaluation of this function cannot 

be started until the entire input to the function is 

collected. [7] A sort and count processes are applied, 

respectively, to the input to compute the final answer. 

As a result, with the conventional evaluation method, 

there is no aggregation can [6] be performed during 

the data collecting process. 

 

 

V. SPJ METHOD 

 

 The basic idea is to create one table with a 

vertical aggregation for each result column, and then 

join all those tables to produce FH. We aggregate 

from F into d projected tables with d Select-Project-

Join-Aggregation queries (selection, projection, join, 

aggregation). Each table FI corresponds to one sub 

grouping combination and has  

{L1; … ;Lj} as primary key and an aggregation on A 

as the only non-key column. It is necessary to 

introduce an additional table F0, that will be outer 

joined with projected tables to get a complete result 

set. We propose two basic sub-strategies to compute 

FH. The first one directly aggregates from F. The 

second one computes the equivalent vertical 

aggregation in a temporary table FV grouping by L1; 

… ;Lj ; R1; … ; Rk.  

 

 

  

    Fig 1: Mainsteps of methods based on FV 

(optimized). 

 

The statement to compute FV gets a cube: 

INSERT INTO FV 

SELECT L1; … ; LJ ; R1; … ; Rk V(A) 

FROM F 

GROUP BY L1; … ; LJ; R1; … ; Rk; 
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Table F0 defines the number of result rows, and 

builds the primary key. F0 is populated so that it 

contains every existing combination of L1; … ; LJ. 

Table F0 has { L1; … ; LJ } as primary key and it 

does not have any non-key column. 

 

INSERT INTO F0 

SELECT DISTINCT L1; … ; LJ 

FROM {F| FV }; 

 In the following discussion I € {1;… ; d}. we use h 

to make writing clear, mainly to define Boolean 

expressions.[2] We need to get all distinct 

combinations of sub grouping columns R1; … ; Rk, to 

create the name of dimension columns, to get d, the 

number of dimensions, and to generate the boolean 

expressions for WHERE clauses. Each WHERE 

clause consists of a conjunction of k equalities based 

on R1 ; …  ;Rk. 

 

SELECT DISTINCT R1; … ;Rk 

FROM {F|FV}; 

 

Tables F1; … ; Fd contain individual 

aggregations for each combination of R1; … ;Rk. The 

primary key of table FI is { L1; … ; LJ }. 

 

INSERT INTO FI;[4] 

SELECT L1; … ;Lj ; V (A) 

FROM {F|FV} 

WHERE R1 = v1I AND .. AND Rk = vkI[6]  

GROUP BY L1; … ;Lj ; 

 

Then each table FI aggregates only those rows that 

correspond to the Ith unique combination of R1; … 

;Rk, given by the WHERE clause.[3] A possible 

optimization is synchronizing table scans to compute 

the d tables in one pass. Finally, to get FH we need d 

left outer joins with the d + 1 tables so that all 

individual aggregations are properly assembled as a 

set of d dimensions for each group. Outer joins set 

result columns to null for missing combinations for 

the given group. [5][6]In general, nulls 

should be the default value for groups 

with missing combinations. We believe it would be 

incorrect to set the result to zero or some other 

number by default if there is no qualifying rows. 

Such approach should be considered on a per-case 

basis. 

 

INSERT INTO FH 

SELECT [3]  

F0.L1; F0.L2; … ; F0.LJ; 

F1.A; F2.A; … ; Fd.A 

FROM Fd 

LEFT OUTER JOIN F1 

ON F0.L1 = F1.L1 and … and F0.LJ = F1.LJ 

LEFT OUTER JOIN F2 

ON F0.L1 = F2.L1 and … and F0.LJ = F2.LJ 

…. 

LEFT OUTER JOIN Fd 

ON F0.L1 = Fd.L1 and …. and F0.LJ = Fd.LJ ; 

 

 We introduce the notion of a generalized 

projection that unifies duplicate eliminating 

projections corresponds to the SQL distinct adjective, 

duplicate preserving projections, group by, and 

aggregations, in a common framework. 

We introduce a generalized projection operator, 

denoted by the symbol π , that is similar to 

aggregation operator. A GP takes as its argument a 

relation R and outputs a new relation based on the 
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subscript of the GP. The subscript specifies the 

computation to be done on R. The subscript has two 

parts:[2] 

1. A set of group by components. We refer to them as 

components and not attribute because they may be 

functions of attributes and not just attributes. For 

instance, the GP πA*B (R) is written as the following 

SQL query: 

Select (A*B) from R group by (A*B). 

2. A set of aggregate components. For example, we 

can write the GP πD,max(S) (R) as the query:  

Select D, max(S) from R group by D. 

Here D is the only group by component and 

max(S) is the only aggregate component.  It is simple 

to observe that a GP has exactly one tuple for each 

value of the group by components and thus does not 

produce any duplicates in its output. [5] Here class of 

queries expressed in a query tree. The permitted 

query trees have types of nodes: selection nodes, 

projection nodes, cross-product nodes, group by 

nodes, and aggregate-group by node pairs. 

An aggregate-group by node pair produces 

as output a relation with one tuple for every distinct 

value in the input relation of the group by attributes. 

 GPs are incorporated into query trees using 

a two step process: 

1. Push GPs down a query tree and annotate the 

query tree with a [3] GP above each node in the tree. 

2. Rewrite the annotated query tree to incorporate the 

GPs that the query optimizer chooses to evaluate and 

to eliminate all other GPs introduced in the push-

down process.[4] 

 

 

VI. PERFORMANCE EVALUATION 

 

   

Most queries are not interested in individual 

tuples of this relation, but rather aggregate properties 

of this relation. [4]Thus in most cases, we need to do 

a groupby on a non-key attribute of this relation. 

When this relation is joined with some other relation,  

that need not be aggregated.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: SPJ Performance evaluation 

algorithm. 

In such cases, our technique would reduce 

considerably the size of the massive table before we 

did a join. It can be argued that in such cases a join 

algorithm like a hash join could be used to achieve a 

similar result. However, hash joins are difficult to 

implement in practice and not commonly 

implemented. Single table aggregations being a 

commonly used feature of SQL exist in most 

systems. Our optimization, when applied to query 

plans, potentially interferes with join ordering, since 

we reduce the size of the relations participating in the 

join.  

VII. CONCLUSION 

 

Horizontal aggregations can be used as a data base 

method to access and generate efficient SQL queries 
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with three different set of parameters: They are 

grouping and sub grouping columns in aggregated 

query formulation. Horizontal aggregations evaluated 

with CASE method have similar performance built-in 

PIVOT operators. Both CASE and PIVOT evaluation 

methods are significantly faster than SPJ method for 

construction of large dataset. To improve the 

performance of SPJ on par with CASE and PIVOT 

we propose Join Enumeration strategies. The 

strategies includes a query tree generation with 

quantifiers algorithm, which includes relations 

referenced by the join predicate that are used to 

associate each join predicate and also considering 

additional relations needed by a predicate to preserve 

the semantics of the original query.  
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