
IJDCST @October Issue- V-1, I-7, SW-10
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

38 www.ijdcst.com

Optimized Data Aggregations using Secondary Indexes

Sailaja Darsi 1 ,K.Kiran Kumar

1 Student, Nova College of Engineering & Technology, Jupudi,IBM

 2 Assistent Prof, HOD CSE, Nova College of Engineering & Technology, Jupudi, IBM

Abstract: Using vertical and horizontal aggregations construction of data sets is the main progression in present

days. Traditionally we are developing the data set construction in Horizontal aggregation for large data

representation process present in data mining applications. In this process we propose to develop three main basic

methods, they are SPJ, PIVOT, CASE for generating columns in horizontal tabular layout aided with complicated

programming language. Traditionally these methods we developed in primary index based data set construction of

the horizontal aggregation. For construction of top data sets presentation in the form of records with efficient and

realistic data construction process primary indexes are not supported for this representation. So we propose to extend

Primary indexes to secondary indexes for doing relevant data representation of selected horizontal aggregation

functions. These results are efficiently constructed top data sets on grouping techniques to handle aggregate queries

with aggregate functions. Our experimental results show efficient data construction for optimized query generation.

Keywords: CASE, PIVOT, SPJ, Aggregation Functions

I. INTRODUCTION

 There are two main ingredients in such SQL

code: joins and aggregations. [1] the most widely-

known aggregation is the sum of a column over

groups of rows. [2] There exist many aggregation

functions and operators in SQL. Unfortunately, all

these aggregations have limitations to build data sets

for data mining purposes.[3] The main reason is that,

in general, data sets that are stored in a relational

database (or a data warehouse) come from On-Line

Transaction Processing (OLTP) systems where

database schemas are highly normalized. Based on

current available functions and clauses in SQL, [1] a

significant effort is required to compute aggregations.

Such effort is due to the amount and complexity of

SQL code that needs to be written, optimized and

tested. Standard aggregations are hard to interpret

when there are many result rows. New class of

aggregate functions that aggregate numeric

expressions and transpose results to produce a data

set with a horizontal layout. [5] Functions belonging

to this class are called horizontal aggregations.

First, they represent a template to generate SQL code

from a data mining tool. This SQL code reduces

manual work in the data preparation phase in a data

mining project. Second, since SQL code is

automatically generated it is likely to be more

efficient than [2] SQL code written by an end user.

Third, the data set can be created entirely inside the

DBMS. Horizontal aggregations just require a small

syntax extension to aggregate functions called in a

SELECT statement. We develop a technique for

pushing GPs down query trees of Select-project-join

may use aggregations like max, sum, etc. and that use

arbitrary functions in their selection conditions. [2]

Our technique pushes down to the lowest levels of a

IJDCST @October Issue- V-1, I-7, SW-10
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

39 www.ijdcst.com

query tree aggregation computation, duplicate

elimination, and function computation.[3]

II. DEFINATIONS

Let F be a table having a simple primary key

K represented by an integer, p discrete attributes and

one numeric attribute: F(K;D1; …..;Dp;A). [6] In

OLAP terms, F is a fact table with one column used

as primary key, p dimensions and one measure

column passed to standard SQL aggregations. F is

assumed to have a star schema to simplify exposition.

[5] Column K will not be used to compute

aggregations. Dimension lookup tables will be based

on simple foreign keys. That is, one dimension

column Dj will be a foreign key linked to a lookup

table that has Dj as primary key. Input table F size is

called N. That is, |F| = N. Table F represents a

temporary table or a view based on a, star join, query

on several tables.

III. HORIZONTAL AGGREGATIONS

Our main goal is to define a template to

generate SQL code combining aggregation and

transposition (pivoting). A second goal is to extend

the SELECT statement with a clause that combines

transposition with aggregation.[2] A method, SPJ

method, is used to evaluate horizontal aggregations

which relies on relational operations. That is, select

project, join and aggregation queries. In order to

evaluate this query the query optimizer takes three

input parameters: (1) the input table F, (2) the list of

grouping columns L1;…. ;Lm , (3) the column to

aggregate (A).[1] In a horizontal aggregation there

are four input parameters to generate SQL code: 1)

the input table F, 2) the list of GROUP BY columns

L1; …… ;Lj , 3) the column to aggregate (A), 4) the

list of transposing columns R1; … ; Rk.

 .

SELECT L1; …; LJ, H(A BY R1; … ; Rk)

FROM F

GROUP BY L1; … ; LJ;

 The result rows are determined by columns

L1; … ; LJ in the[3] GROUP BY clause if present.

Result columns are determined by all potential

combinations of columns R1; … ; Rk, where k = 1 is

the default.

 The main reasons are that any insertion into

F during evaluation may cause inconsistencies: (1) it

can create extra columns in FH, for a new

combination of R1; … ; Rk; (2)[3] it may change the

number of rows of FH, for a new combination of L1;

… ; LJ ; (3) it may change actual aggregation values

in FH.

Therefore, the result table FH must have as

primary key the set of grouping columns { L1; … ;

LJ} and as non-key columns all existing combinations

of values R1; … ; Rk.

A horizontal aggregation exhibits the

following properties:

1) n= | FH |matches the number of rows in a vertical

aggregation grouped by L1; … ;Lj .

2) d = | πR1,….,Rk (F) |

3) Table FH may potentially store more aggregated

values than FV due to nulls. That is, | FV | ≤ nd.

 DBMS limitations: On the other hand, the

second important issue is automatically generating

unique column names. [4] However, these are not

IJDCST @October Issue- V-1, I-7, SW-10
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

40 www.ijdcst.com

important limitations because if there are many

dimensions that is likely to correspond to a sparse

matrix (having many zeroes or nulls) on which it will

be difficult or impossible to compute a data mining

model. The column name length issue can be solved

by generating column identifiers with integers and

creating a description table that maps identifiers to

full descriptions, but the meaning of each dimension

is lost. An alternative is the use of abbreviations,

which may require manual input.

IV. HOLISTIC FUNCTIONS

Both the distributive and algebraic functions

have the distributive property, though the algebraic

functions have different consolidating function.

Functions not distributive or algebraic are called

holistic. [7] The results of this type of aggregate

function are normally determined by the entire set of

inputs and are not able to be evaluated incrementally.

That is, neither sub aggregate functions (the F() in

distributive and H () in algebraic aggregate

functions) nor consolidating aggregate function (GO)

can be identified. An example of holistic function is

MEDIAN (). The evaluation of this function cannot

be started until the entire input to the function is

collected. [7] A sort and count processes are applied,

respectively, to the input to compute the final answer.

As a result, with the conventional evaluation method,

there is no aggregation can [6] be performed during

the data collecting process.

V. SPJ METHOD

 The basic idea is to create one table with a

vertical aggregation for each result column, and then

join all those tables to produce FH. We aggregate

from F into d projected tables with d Select-Project-

Join-Aggregation queries (selection, projection, join,

aggregation). Each table FI corresponds to one sub

grouping combination and has

{L1; … ;Lj} as primary key and an aggregation on A

as the only non-key column. It is necessary to

introduce an additional table F0, that will be outer

joined with projected tables to get a complete result

set. We propose two basic sub-strategies to compute

FH. The first one directly aggregates from F. The

second one computes the equivalent vertical

aggregation in a temporary table FV grouping by L1;

… ;Lj ; R1; … ; Rk.

 Fig 1: Mainsteps of methods based on FV

(optimized).

The statement to compute FV gets a cube:

INSERT INTO FV

SELECT L1; … ; LJ ; R1; … ; Rk V(A)

FROM F

GROUP BY L1; … ; LJ; R1; … ; Rk;

IJDCST @October Issue- V-1, I-7, SW-10
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

41 www.ijdcst.com

Table F0 defines the number of result rows, and

builds the primary key. F0 is populated so that it

contains every existing combination of L1; … ; LJ.

Table F0 has { L1; … ; LJ } as primary key and it

does not have any non-key column.

INSERT INTO F0

SELECT DISTINCT L1; … ; LJ

FROM {F| FV };

 In the following discussion I € {1;… ; d}. we use h

to make writing clear, mainly to define Boolean

expressions.[2] We need to get all distinct

combinations of sub grouping columns R1; … ; Rk, to

create the name of dimension columns, to get d, the

number of dimensions, and to generate the boolean

expressions for WHERE clauses. Each WHERE

clause consists of a conjunction of k equalities based

on R1 ; … ;Rk.

SELECT DISTINCT R1; … ;Rk

FROM {F|FV};

Tables F1; … ; Fd contain individual

aggregations for each combination of R1; … ;Rk. The

primary key of table FI is { L1; … ; LJ }.

INSERT INTO FI;[4]

SELECT L1; … ;Lj ; V (A)

FROM {F|FV}

WHERE R1 = v1I AND .. AND Rk = vkI[6]

GROUP BY L1; … ;Lj ;

Then each table FI aggregates only those rows that

correspond to the Ith unique combination of R1; …

;Rk, given by the WHERE clause.[3] A possible

optimization is synchronizing table scans to compute

the d tables in one pass. Finally, to get FH we need d

left outer joins with the d + 1 tables so that all

individual aggregations are properly assembled as a

set of d dimensions for each group. Outer joins set

result columns to null for missing combinations for

the given group. [5][6]In general, nulls

should be the default value for groups

with missing combinations. We believe it would be

incorrect to set the result to zero or some other

number by default if there is no qualifying rows.

Such approach should be considered on a per-case

basis.

INSERT INTO FH

SELECT [3]

F0.L1; F0.L2; … ; F0.LJ;

F1.A; F2.A; … ; Fd.A

FROM Fd

LEFT OUTER JOIN F1

ON F0.L1 = F1.L1 and … and F0.LJ = F1.LJ

LEFT OUTER JOIN F2

ON F0.L1 = F2.L1 and … and F0.LJ = F2.LJ

….

LEFT OUTER JOIN Fd

ON F0.L1 = Fd.L1 and …. and F0.LJ = Fd.LJ ;

 We introduce the notion of a generalized

projection that unifies duplicate eliminating

projections corresponds to the SQL distinct adjective,

duplicate preserving projections, group by, and

aggregations, in a common framework.

We introduce a generalized projection operator,

denoted by the symbol π , that is similar to

aggregation operator. A GP takes as its argument a

relation R and outputs a new relation based on the

IJDCST @October Issue- V-1, I-7, SW-10
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

42 www.ijdcst.com

subscript of the GP. The subscript specifies the

computation to be done on R. The subscript has two

parts:[2]

1. A set of group by components. We refer to them as

components and not attribute because they may be

functions of attributes and not just attributes. For

instance, the GP πA*B (R) is written as the following

SQL query:

Select (A*B) from R group by (A*B).

2. A set of aggregate components. For example, we

can write the GP πD,max(S) (R) as the query:

Select D, max(S) from R group by D.

Here D is the only group by component and

max(S) is the only aggregate component. It is simple

to observe that a GP has exactly one tuple for each

value of the group by components and thus does not

produce any duplicates in its output. [5] Here class of

queries expressed in a query tree. The permitted

query trees have types of nodes: selection nodes,

projection nodes, cross-product nodes, group by

nodes, and aggregate-group by node pairs.

An aggregate-group by node pair produces

as output a relation with one tuple for every distinct

value in the input relation of the group by attributes.

 GPs are incorporated into query trees using

a two step process:

1. Push GPs down a query tree and annotate the

query tree with a [3] GP above each node in the tree.

2. Rewrite the annotated query tree to incorporate the

GPs that the query optimizer chooses to evaluate and

to eliminate all other GPs introduced in the push-

down process.[4]

VI. PERFORMANCE EVALUATION

Most queries are not interested in individual

tuples of this relation, but rather aggregate properties

of this relation. [4]Thus in most cases, we need to do

a groupby on a non-key attribute of this relation.

When this relation is joined with some other relation,

that need not be aggregated.

Figure 1: SPJ Performance evaluation

algorithm.

In such cases, our technique would reduce

considerably the size of the massive table before we

did a join. It can be argued that in such cases a join

algorithm like a hash join could be used to achieve a

similar result. However, hash joins are difficult to

implement in practice and not commonly

implemented. Single table aggregations being a

commonly used feature of SQL exist in most

systems. Our optimization, when applied to query

plans, potentially interferes with join ordering, since

we reduce the size of the relations participating in the

join.

VII. CONCLUSION

Horizontal aggregations can be used as a data base

method to access and generate efficient SQL queries

IJDCST @October Issue- V-1, I-7, SW-10
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

43 www.ijdcst.com

with three different set of parameters: They are

grouping and sub grouping columns in aggregated

query formulation. Horizontal aggregations evaluated

with CASE method have similar performance built-in

PIVOT operators. Both CASE and PIVOT evaluation

methods are significantly faster than SPJ method for

construction of large dataset. To improve the

performance of SPJ on par with CASE and PIVOT

we propose Join Enumeration strategies. The

strategies includes a query tree generation with

quantifiers algorithm, which includes relations

referenced by the join predicate that are used to

associate each join predicate and also considering

additional relations needed by a predicate to preserve

the semantics of the original query.

VIII. REFERENCES

[1] A. Witkowski, S. Bellamkonda, T. Bozkaya, G.

Dorman, N. Folkert, A. Gupta, L. Sheng, and S.

Subramanian. Spreadsheets in RDBMS for OLAP. In

Proc. ACM SIGMOD Conference, pages 52.63, 2003.

[2] Venky Harinarayan, Ashish Guptay “Generalized

Projections: a Powerful Query-Optimization

Technique “

[3] “Vertical and Horizontal Percentage

Aggregations”, Carlos Ordonez Teradata, NCR San

Diego, CA 92127, USA.

[4] G. Bhargava, P. Goel, and B.R. Iyer. Hypergraph

based reordering of outer join queries with complex

predicates. In ACM SIGMOD Conference, pages

304.315, 1995.

[5] U. Dayal, N. Goodman, and R. H. Katz. “An

Extended Relational Algebra with Control over

Duplicate Elimination”. In Proceedings of the ACM

Symposium on Principles of Database Systems,

1982, pages 117-123.

[6] Venky Harinarayan and Ashish Gupta.

Optimization Using Tuple Subsumption. To appear in

ICDT 95, January 1995.

[7] Andy S. Chiou, John C. Sieg ,” Optimization

for Queries with Holistic Functions”, 0-7695-0996-

7/01$ 10.00 0 2001 IEEE.

[8] C. Ordonez. Statistical model computation with

UDFs. IEEE Transactions on Knowledge and Data

Engineering (TKDE), 22, 2010.

[9] C. Ordonez. Data set preprocessing and

transformation in a database system. Intelligent Data

Analysis (IDA), 15(4), 2011.

[10] C. Ordonez and S. Pitchaimalai. Bayesian

classifiers programmed in SQL. IEEE Transactions

on Knowledge and Data Engineering (TKDE),

22(1):139–144, 2010.

[11] Haixun Wang and Carlo Zaniolo. “Using SQL to

Build New Aggregates and Extenders for Object-

Relational Systems”. VLDB 2000.

[12] Haixun Wang and Carlo Zaniolo. “Extending

SQL for Decision Support Applications”. DMDW

2002.

[13] Haixun Wang and Carlo Zaniolo. “ATLaS: A

Native Extension of SQL for Data Mining and

Stream Computations”. SIAM Data Mining May

2003.

[14] Haixun Wang and Carlo Zaniolo. “On the

Properties of a Native Extension of SQL for Data

Streams and Data Mining”. Submitted to VLDB

2003.

 +

